
[Wakrime, SESA2014: February 2015] ISSN 2348 – 8034

 (C) Global Journal Of Engineering Science And Researches

36

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

MODELING INTERACTIVE SCIENTIFIC VISUALIZATION APPLICATIONS WITH

STRICT COLORED FIFO NETS

Abderrahim Ait Wakrime*1, Sébastien Limet2 and Sophie Robert3
*1, 2, 3 University Orléans, INSA Centre Val de Loire, LIFO, EA 4022, F-45067, Orléans, France

ABSTRACT

Component-based approaches are becoming popular in recent years in the software development. The goal of these

approaches is to build software systems by assembling heterogeneous and independent components. In life and material

sciences, the interactive scientific visualization applications contain three main parts like: interaction, simulation and

visualization. Our component-based approach ComSA is used to compose these different parts. It meets the constraints

of visualization applications or of visual Analytics. It relies on new and effective means for building applications on

parallel or/and distributed architecture. In this paper, we present a modeling of our component-based approach ComSA

with a particular class of FIFO nets called strict Colored FIFO Nets (sCFN). This modeling is used to describe and

analyze the different component behaviors and the various communication policies within the application. sCFNs are

used to carry out simulations and to analyze properties like liveness to detect deadlocks.

Keywords- Component-based Approach, FIFO nets, Modeling, Scientific Visualization.

I. INTRODUCTION

The importance of the component-based approaches has grown in the last years because they can greatly facilitate the

development of software applications by non-programmers. The general principle of a component-based approach relies

on a component which represents the computational element [1, 2]. It is considered as a black box with an interface

described as a set of ports that allows to perform communications between the component and its environment. The

development and integration of an interactive scientific visualization applications requires skills in scientific computing,

graphics rendering, interaction programming and code coupling. That is why component-based approach is an efficient

and powerful solution to build this kind of applications. Indeed, this approach provides the possibility for developers to

efficiently assemble the different heterogeneous parts developed to produce a modular application. In addition,

component-based approach reduces integration time, favors reusability of components and provides a better legibility

and a better maintenance. But, the composition model may need to be specialized in order to provide techniques to

assemble components, also, to build an application meeting the characteristics of the aimed domain (scientific

consistency, heterogeneous code, distributed/parallel implementation...).

In this paper, we present a component-based approach called ComSA that meets the specific needs of interactive

scientific visualization applications like performance and data consistency. The paper is organized as follows. In

Section 2 we present ComSA model. In Section 3 we outline strict Colored FIFO Nets and its usefulness to model and

analyze an application. We conclude in Section 4 by pointing to other aspects which are being investigated.

II. COMPONENT MODEL
In this section we introduce the Component-based approach for Scientific Applications (ComSA), which is dedicated to

interactive scientific visualization applications. We provide a description of the main features of our model.

1. Components

A component C is a unit of reusable code, composable and portable which is considered as a black-box. A component

consists of:

(i) An identifier Id, (ii) A set of user defined input data ports pInC , this set includes a port s that represents an input

triggering port, (iii) A set of user defined output data ports pOutC , this set includes a port e that represents an output

signal port, (iv) RIC a set of incidence relations that represent the different behaviors of the component C. Each

incidence relation is written as a couple r=<RIin,RIout> with RIin ⊆ pInC and RIout ⊆ pOutC. The Figure 2(b) represents

a component example of our model.

The behavior of the component C is represented in Figure 1, the component works iteratively with the following steps:

(1) Wait Data: wait until at least one of its incidence relation is satisfied (i.e. all of its input ports contain new data), (2)

Get Data: get the data stored in the input ports of all satisfied incidence relations of C, (3) Data processing: task

execution which corresponds of the triggered incidence relations and (4) Put Data: put new data to the output ports of

all satisfied incidence relations of C and emit a signal on the output signal port e.

[Wakrime, SESA2014: February 2015] ISSN 2348 – 8034

 (C) Global Journal Of Engineering Science And Researches

37

Figure 1: The component iteration cycle

Figure 2: (a) The connectors associated to our model. (b) A component example

2. Communication schemes

The communication schemes in our model is based on an exogenous coordination using two objects like connectors and

links. These objects connect the components and orchestrate the application.

Connectors: Our model has five types of connectors which implement different kinds of communication policies like:

plain connections, anti-saturation connections and non-blocking connections. First, for a plain FIFO connection, the

connector is called sFIFO. This connector is used to prevent overflows, because, the sender waits a triggering signal

from the receiver to produce and send data. Second, for non-blocking connections we defined two connectors called

bBuffer and nbBuffer. bBuffer: Buffered FIFO connectors keep their incoming messages and dispatch the oldest one

when they receive a triggering signal on its port s. nbBuffer is similar to the bBuffer except that it provides the receiver

with empty messages when the buffer is empty. Last, bGreedy and nbGreedy represent the anti-saturation connections.

bGreedy connectors keep only the last message provided by the sender and sends it upon the receiver’s request.

nbGreedy connectors are the non-blocking variant of greedy connectors, they generate an empty message when it has

no message in its buffer.

Links: The links are used to connect components and connectors via their ports. There are two types of links: (1) data

links which transmit data between data ports and especially between data port connector and data port component. (2)

Trigger links which transmit trigger signals. These links are represented by dashed lines as shown in Figure 2(a).

3. Application graph

An application can be represented by an application graph, whose vertices are the components and connectors and

whose edges are the data and the trigger links. Figure 3 shows an example of an interactive visualization application

built with five components. Three components (simulation 1, 2 and 3) are in charge of computing some scientific

simulations. Interaction component is used to handle user interactions and visualization displays the current state of

simulation as well as some information that help the user in its interactions. Interaction can run very fast whereas

simulation and visualization are usually much slower, that is why greedy connectors are used on Interaction output

links. The non-blocking connector between simulation 1 and simulation 2 allows the latter to run as fast as possible

taking into account all messages provided by simulation 1.

[Wakrime, SESA2014: February 2015] ISSN 2348 – 8034

 (C) Global Journal Of Engineering Science And Researches

38

Figure 3: Example of a typical ComSA application

III. STRICT COLORED FIFO NETS
Petri Nets are widely used for modeling various systems and constitute a mathematical tool that can animate, simulate

and analyze the interactive scientific visualization applications. For applications and more specifically for component

based applications, the use of Petri nets allows to describe internal behavior of each object such as component and

connector.

1. sCFN model

A strict colored FIFO nets (sCFNs) are Petri nets that are at the junction of Colored Petri nets [3]which permit to

differentiate the tokens and FIFO nets [4] which insure that tokens leave a place the order they entered this place. These

two features fit our needs to model the behavior of the components. Therefore, all places of the sCFN are FIFO queues

and each transition consumes exactly one token in each of its input places and produces exactly one token in its output

places. Thus, the availability of a data on an input/output port is modeled by the existence of a token in the place which

models this port. The formalization of our component-based model in sCFN defines separately sCFNs of components,

connectors and combines them to build the sCFN of the application, for more details see [5].

There are several advantages for using sCFN formalism to model our component-based approach:

 sCFNs have formal semantics,

 sCFNs offer visual representations and modeling techniques,

 sCFNs describe precisely the detailed behavior of each ComSA application,

 sCFNs track the displacements of data over the net.

2. Model analysis based on sCFN

For lack of space we cannot detail the formal aspects of the analysis we perform on ComSA applications using sCFNs.

We only give a few elements to explain the benefits of our approach. In former versions of ComSA, no formal semantics

were provided which made difficult the verification of some important properties like liveness of the application.

Semantics provided by sCFNs as well as the well-known results on Petri nets allow us to define and implement tools to

analyze applications and help the user to correct them. In our framework, the user only works on his application graph

and never directly manipulates sCFNs. sCFNs are used by analysis tools and the results are translated back to the

[Wakrime, SESA2014: February 2015] ISSN 2348 – 8034

 (C) Global Journal Of Engineering Science And Researches

39

application graph so that the user can understand them. In [5], we defined a sufficient condition to guarantee the place-

liveness of a sCFN and showed that this property is a sufficient condition to guarantee the liveness of the application

(i.e. none of its components will be starving). If the application is not live, our tools are able to propose to the user some

modifications on the application graph to correct it.

In the current work, we address the problem of reconfiguration. When the user wants to modify dynamically his ComSA

application by inserting or removing components on the fly some problems can occur. First of all, this reconfiguration

should be performed without stopping completely the application, i.e. only the parts of the application that are impacted

by the reconfiguration are paused in order to minimize the number of unavailable services. The user describes on the

application graph the modifications he wants. Our tools verify on the sCFN the correctness of the reconfiguration

actions like insert, remove, pause and also check that the modified application can properly start again. Once

again, the analyzes on the sCFN can provide some solutions to correct an incorrect reconfiguration.

IV. CONCLUSION and PERSPECTIVES
In this article, we presented ComSA1, a component-based approach based on iterative components to model the

interactive scientific visualization applications. We also presented the benefits of using a formal semantics based on the

particular class of Petri nets called sCFN. This transformation models the different behaviors of the application and it

allows simulation and detection of existing deadlocks. Also, sCFN provides a tool to perform the verification of

different studied properties when a reconfiguration is applied in a given ComSA application. Our ambition is to enrich

our model in order to take into account composite components. This kind of components can be of two kinds: first

parallel components i.e. components that are parallel programs, second hierarchical components. Hierarchical

components have the good property to both help the user to build complex applications and the analysis tools to

structure and simplify the verification of properties.

REFERENCES
1. Wolfgang Emmerich and Nima Kaveh. Component technologies: Java beans, COM, CORBA,RMI, EJB and the

CORBA component model. In ICSE ’02: Proceedings of the 24th International Conference on Software

Engineering, pages 691–692, New York, 2002. ACM Press.

2. R. Armstrong, G. Kumfert, L.C. McInnes, S. Parker, B. Allan, M. Sottile, T. Epperly, and T. Dahlgren. The CCA

component model for high-performance scientific computing. Concurrency and Computation: Practice and

Experience, 18(2):215–229, 2006.

3. K. Jensen and L. M. Kristensen. Coloured Petri Nets - Modelling and Validation of Concurrent Systems. Springer,

2009.

4. [A. Finkel and G. Memmi. FIFO nets: A new model of parallel computation. In ArminB. Cremers and Hans-Peter

Kriegel, editors, Theoretical Computer Science, volume 145 of Lecture Notes in Computer Science, pages 111–

121. Springer Berlin Heidelberg, 1982.

5. Abderrahim Ait Wakrime, Sébastien Limet, and Sophie Robert. Place-liveness of ComSA applications. In Formal

Aspects of Component Software - 11th International Symposium, FACS 2014, 10-12 September 2014, Bertinoro,

Italy, 2014.

1 This work is supported by the ANR project ExaviZ (Exa-scalable visual analysis for life and materials sciences: http://exaviz.simlab.ibpc.fr)

