COMMON FIXED POINTS OF RELATIVELY NONEXPANSIVE MAPPINGS BY ITERATION

S. Gomathi*1 & V. Sankar Raj2
*1&2Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India

Abstract
Let us consider two nonempty closed convex subsets A, B of a strictly convex space and \(f_i : A \cup B \to A \cup B, i = 1, 2, \ldots, k \) be relatively nonexpansive mappings. i.e. \(f_i(A) \subseteq A \) and \(f_i(B) \subseteq B \) and \(||f_i(x) - f_i(y)|| \leq ||x - y|| \), for all \(x \in A \) and \(y \in B \). In this paper, we provide the strong convergence of some iteration of the mappings \(\{f_i\}_{k=1}^k \) to a common fixed point of \(\{f_i\}_{k=1}^k \) in strictly convex space setting, which generalizes a result of Kuhfittig [7].

Key words: Relatively nonexpansive mappings, fixed points.

AMS Subject classification: 54H25, 47H10.

I. INTRODUCTION

We know that the behaviour of the iterated sequences play a role in fixed point theory. It is well known fact that if an iterated sequence of a continuous mapping \(T \) converges, then the limit of it must be a fixed point of \(T \). Also, Banach contraction principle states that every contraction mapping \(T : A \to A \), where \(A \) is a complete subspace of a metric space \(X \), has unique fixed point in \(A \) and every iterated sequence of \(T \) starting from any \(x \in A \) converges to the unique fixed point of \(T \). But the behaviour of the iterated sequences of nonexpansive mappings are completely different from the iterated sequences of contractive type mappings.

Consider a nonexpansive mapping \(T : A \to A \), where \(A \) is a nonempty closed convex subset of a normed linear space \(X \). In [1], Krasnoselskii proved that in uniformly convex Banach space \(X \), the sequence of successive approximation of the averaged mapping \(F : A \to A \) given by \(F(x) := (x + T x)/2 \), for all \(x \in A \), converges to a fixed point of the nonexpansive mappings \(T \). A complete proof of Krasnoselskii’s results in English can be found in [2]. Later, in [3], Edelstein extended Krasnoselskii’s result to strictly convex space setting.

In [4], the authors introduced a class of mappings called relatively nonexpansive defined as follows, which generalizes the notion of nonexpansive mappings.

DEFINITION 1. Let \(A, B \) be nonempty subsets of a normed linear space \(X \) and \(T : A \cup B \to A \cup B \) be a mapping. Then \(T \) is said to be a relatively nonexpansive mapping if and only if

1. \(T(A) \subseteq A \) and \(T(B) \subseteq B \),
2. \(||T x - T y|| \leq ||x - y|| \), for all \(x \in A, y \in B \).

Define that \(\text{dist}(A, B) = \inf \{||a - b|| : a \in A, b \in B\} \) and for any given pair of subsets \(A, B \) of a normed linear space \(X \), define \(A_0 = \{x \in A; ||x - y|| = \text{dist}(A, B), \text{for some } y \in B\} \). In [5], the authors provided sufficient conditions.
which ensure the non emptiness of the set A_0. In [6], the authors proved that A_0 is contained in the boundary of the set A.

In [4], the authors introduced and used the geometric notion called proximal normal structure to prove the existence of the best proximity point. In [8], the authors generalized the results in [4]. In [7], the main result is as follows.

THEOREM 1.1. Let C be a convex compact subset of a strictly convex Banach space X and $\{T_i : i = 1, 2, \ldots, k\}$ a family of non-expansive self mappings of C with a nonempty set of common fixed points.

Then for an arbitrary starting point $x \in C$, the sequence $\{U^n \}^\infty$ converges strongly to a common fixed point of $\{T_i : i = 1, 2, \ldots, k\}$.

In this article, we generalized the above theorem of [7].

II. PRELIMINARIES

In this section, we introduce basic definition and results which we used in our main result. We generalized the iteration of nonexpansive given in [7]

REMARK 2.1. Let A, B be two nonempty convex subsets of a Banach space X. Let $f_i : A \cup B \to A \cup B, i = 1, 2, \ldots, k$, be a relatively nonexpansive mapping. Fix $F_0 = I$. For $0 < \alpha < 1$.

$$
F_1 = (1 - \alpha)I + \alpha f_1 F_0 \\
F_2 = (1 - \alpha)I + \alpha f_2 F_1 \\
\vdots \\
F_k = (1 - \alpha)I + \alpha f_k F_{k-1}.
$$

$x_{n+1} = (1 - \alpha) x_n + \alpha f_k F_{k-1} x_n$ \hspace{1cm} (1)

Put $k = 1$, $x_{n+1} = (1 - \alpha) x_n + \alpha f_1 F_0 x_n$ \hspace{1cm} (2)

Let us state an convergence result, which plays a vital role in our main result.

THEOREM 2.1. [8]Let A, B be nonempty closed convex subsets of a strictly convex Banach space X such that A_0 is nonempty. Let $T : A \cup B \to A \cup B$ be a relatively nonexpansive mapping. Suppose $T (A)$ is contained in a compact subset A_1 of A. Then the Krasnoselskii’s iteration $\{F^n (x)\}$, where $F : A \cup B \to A \cup B$ given by $F (x) = \frac{1}{2} (T x + x)$, converges to a fixed point of T.

III. MAIN RESULT

Our main result is as follows.

THEOREM 3.1. Let A, B be two nonempty convex, compact subsets of a strictly convex Banach space X with A_0 is nonempty. Let $f_i : A \cup B \to A \cup B, i = 1, 2, 3 \ldots, k$ be mappings with a non empty set of fixed points $\|f_i (x)\|$
Proof. We can easily prove that the mappings F_j and f_jF_{j-1}, $j = 1, 2, \ldots, k$ are relatively nonexpansive and map $A \cup B$ into itself.

Now we are going to prove \{${F_k^n(x)}$\} converges to a fixed point of f_i, $\forall x \in A \cup B$.

Let $x \in A \cup B$ with $f_j(x) = x$, $j = 1, 2, \ldots, k$.

Then

$$F_1(x) = (1 - \alpha)x + \alpha f_1F_0(x) = (1 - \alpha)x + \alpha f_1(x) = (1 - \alpha)x + \alpha x = x,$$

$$F_2(x) = (1 - \alpha)x + \alpha f_2F_1(x) = x$$

Proceeding like this, we get $F_j(x) = x$, $j = 1, 2, \ldots, k$.

Now, let $F_j(x) = x$, $j = 1, 2, \ldots, k$.

$$x = F_j(x) = (1 - \alpha)x + \alpha f_jF_{j-1}(x) = (1 - \alpha)x + \alpha f_j(x)$$

$$\Rightarrow \alpha x = \alpha f_j(x)$$

Hence $f_j(x) = x$, $j = 1, 2, \ldots, k$.

Since (1) has the same form as (2), \{${F_k^n(x)}$\} converges to a fixed point y of f_kF_{k-1}. We wish to show next that y is a common fixed point of f_k and F_{k-1} ($k \geq 2$). To this we first show that $f_{k-1}F_{k-2}y = y$. Suppose not, the closed line segment $[y, f_{k-1}F_{k-2}y]$ has positive length.

Let $z = f_{k-1}y = (1 - \alpha)y + \alpha f_{k-1}F_{k-2}(y)$

By hypothesis, there exists a point $w \in A \cup B$ such that $f_1w = f_2w = \ldots = f_kw = w$. Since f_i and F_i have the same common fixed points, it follows that $f_{k-1}F_{k-2}w = w$.

By relatively nonexpansive, $\|f_{k-1}F_{k-2}y - w\| \leq \|y - w\|$ and $\|f_kw - w\| \leq \|z - w\|$ (3)

So w is atleast as close to f_kw as to z.

But $f_kw = f_kF_{k-1}y = y$. Therefore w is atleast as close to y as to $z = (1 - \alpha)y + \alpha f_{k-1}F_{k-2}y$.

Since X is strictly convex, $\|y - w\| < \|f_{k-1}F_{k-2}y - w\|$, which is a contradiction to (3). Therefore $f_{k-1}F_{k-2}y = y$.

Now, $F_{k-1} = (1 - \alpha)y + ay = y$ and $y = f_{k-1}F_{k-2}y = f_ky$

$\Rightarrow y$ is a common fixed point of f_k and F_{k-1}. Repeating the argument, we conclude that y is a common fixed point of f_i and F_j, $j = 1, 2, \ldots, k$.

REFERENCES

2. F.F.Bonsall; Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay, 1962.
6. S.Saiq Basha, P.Veeramani; Best Proximity pair theorems for multifunction with open fibers, J.Appro. Theory, 103(200),119-129.
8. S.Gomathi, V.Sankar Raj; Convergence of Krasnoselskii’s iteration of relatively nonexpansive mappings in strictly convex spaces, GJESR, 5 pp, 288-293.